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Abstract. A mode-coupling theory for supercooled liquid dynamics exhibits bi- 
furcation singularities which cause a temperature Tc for the crossover from liquid 
to glass behaviour. Near Tc the long-time relaxation is a two-step process related 
to the experimentally known 0- and &relaxation in structural glass formers. The 
dynamical anomalies predicted by the theory for the two processes are reviewed. 

The  mode-coupling theory (MCT) of glassy dynamics is based on closed equations 
of motion for a set of M correlators d,( t ) ,  q = 1, .  . . , M .  A first equation connects 
accelerations, Hooke's restoring forces and friction forces 

t 

$,(t) + Q;#,(t) + 1 M,(t - t ' )  d,( t ' )  dt' = 0. ( l a )  
0 

The  generalized viscosity or polarization kernel M relates a force at time t t o  velocities 
at times t' 5 t .  The  kernel M is expressed in terms of a Newtonian friction constant 
v, and two kernels m, and 5, via an  equation which is algebraic for the Fourier- 
transformed variables 

M , ( 4  = b q  + mq(41/{1- 5,(4[iv* + W&J)l)~ (16) 

The  frequencies R,, v, determine the short time transient motion. Kernels m, and 6, 
are given in terms of the correlators via mode-coupling functionals 

The  non-negative coefficients of these polynomials, the coupling constants of the  
model, are combined to  the state vector X = (V, W )  in the control parameter space R. 
In applications q refers e.g. to the wavevector modulus of density fluctuations so tha t  
d, ( t )  = (p ; ( t )pq ) /Sq ,  S, = ( lpq lz )  is the density correlator. Its spectrum determines 
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the dynamical structure factor S ( q , w )  = S $"(U) .  Coupling to transversal currents [l] 4 q is not noted above for the sake of simplicity. For the models with W = 0 one can 
show, that (1) and (2) has a unique solution with $;(U)  2 0, [2]. 

The space IR can be split into the open set of liquid states VL, the set of ideal 
glass states VG, and the set of glass transition singularities V,. V, contains the weak 
coupling region X N ( 0 , O ) .  For X E V, the correlations decay to zero $q(t  + cm) = 0 
and the spectra $;(U)  depend smoothly on w .  The set VG consists of certain points 
X = (V,O) where f,(V) = $q(t  + CO) is positive and regular in V; VG contains 
the points with F q ( V , l )  > V, with some V, > 0 [3,4]. fq (V)  obeys the equation 
fq/(l - f,) = Fq(V,  fk) [3,5]; if this equation has several solutions, the largest one is 
fq(V) [6]. fq(V) > 0 is the signature of ideal glass states [7]. Like for a crystalline 
solid the dynamical structure factor exhibits an elastic line on top of a continuum 

X E VG : S(q, U )  = S q r f q 6 ( w )  + continuum. (3) 

Unlike in a crystal, the Debye-Waller factor f q  here is positive for all q .  The sin- 
gularities of f q ( V )  for V E V,, the glass transition singularities [l], are the bifur- 
cation points of the model. The transition points from V, to V,, the ideal liquid- 
to-glass transitions, are special glass transition singularities. The bifurcations a t  V, 
are of the cuspoid type A,,  1 = 2 , 3 , .  . . [8,9]. In the limit V -+ V, one can solve 
(1) and (2) asymptotically for t / t ,  >> 1. Near an A ,  singularity one finds e.g. [lo]: 
q5,(t) - f q ( V c )  = h,p(ln(t/t,), g,, 9,). Here p is the Weierstrass elliptic function with 
moduli g,,, depending smoothly on V. Depending on V - V, this implies e.g. 

The exponents a and b depend smoothly on V and they approach zero for g,,, -+ 0. 
The MCT is interesting for two reasons. First, it describes new bifurcation scenarios 
with a variety of non-trivial relaxation laws. The novel features are caused by the 
interplay of the retardation effects in ( l a )  with the nonlinearities. Second, the decay 
laws near V, E V, exhibit stretching; and this is the most important feature of glassy 
dynamics. The simplest singularities are degenerate A, points where fq(V,) = 0. 
They are of relevance for percolation transitions [ll-131 and orientational glass tran- 
sitions [14]. The combination of degenerate A, and A, singularities is of interest for 
spin glass transitions [8,10,15]. In the following only the canonical Whitney fold sin- 
gularity A, will be considered, which was proposed for the description of structural 
glass transitions [5,16]. 

For simple liquids the MCT can be derived from first principles [l, 51 by exploiting 
Kawasaki's factorization approximation [ 171 to fluctuating force correlations, which 
appear e.g. in the formally exact generalized kinetic equation approach [18]. One 
gets only v(') and tu(') terms in (2u) and (26). appear if 
models with frozen disorder are considered [11-15]. Kernel m describes relaxation 
with streaming patterns of incompressible backflow, the dominant dynamical feature 
of dense fluids [19]. Equations (1) and (2) with 6 = v = 0 extend the Feynman- 
Cohen approach of this phenomenon [20]. The term 6 describes the other essential 
relaxation mechanism of dense systems: phonon assisted particle hopping over free 
energy barriers. If applied to  disordered electron systems, (1) and ( 2 )  reproduce the 
standard results [21]. For large m, the dominance of kernel 6 in ( l b )  leads to  the 
Arrhenius law for the relaxation rate [22], the experimental signature of activated 

Linear terms ~ ( ' 1 ,  
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transport. If hopping is ignored, lowering the temperature T or increasing the density 
n drives the system through an ideal liquid-to-glass transition at T, or n,. Due to 
S,(T,) # 0 the system remains in a liquid state throughout [1,23]. If S(T,) is not too 
large the dynamics for T - T, exhibits strong anomalies reflecting the existence of the 
singularity V,. So a crossover from liquid to glass dynamics for T near T, is described 
by the MCT. The known dynamical anomalies of the liquid state appear as glass 
transition precursors. For T T, and 6(T,) -+ 0 the V, anomalies can be calculated 
to some extend analytically. The critical values T,, n, have been calculated for the 
hard-sphere system [5], for the Lennard-Jones system [24] and for hard-sphere [25] 
and soft-sphere mixtures [26]. For other systems, T, can be identified by measuring 
the predicted crossover phenomena and fitting the data to the theoretical formulae. 

The relaxation near an A, singularity is a two-step process characterized by two 
time scales r,, rp.  The long-time part for rp << t is called a-process; it leads to 
the cr-peaks of the susceptibility spectra ~“(w) cx W ~ ’ ’ ( W ) .  The peak position can be 
chosen to define l /ra.  The p- process describes the dynamics outside the microscopic 
transient before the center of the cr-process for t o  << t << ra. For an idealized transition 
both times diverge: ra,  rp + CO for T -+ TC+. But ra/rp diverges also for T + T,+ 
so that the time interval rp << t << r,, where both processes overlap, becomes large 
near the transition. Hopping processes, 6(T,) # 0,  prevent re, rp to diverge and cause 
crossovers to large but finite values ra(Tc) >> rp(T,) >> t o  [1,27]. 

The Debye-Waller factor of the ideal glass is the cy peak area for T < T, [l, 271. It 
shows a square root singularity as function of the separation parameter ~7 cx (T, -T )  0: 
n - n, for T -+ T,- [3] 

f q  = fp” + hqA&. (5) 

4 ,w  = F9(Vd f  (6) 

For T > T, the a-relaxation part obeys the a-scaling law [4] 

Here the master function F depends smoothly on V ,  so that the strong T or n depen- 
dence is caused by the scale ra only. There is a-scale universality [4] in the following 
sense for T > T,. The scales for two a- processes, say TA for the viscosity and r: for 
the dielectric loss, increase strongly but TA/.: is only a smooth function of T .  Scale 
universality and scaling law (6) are usually invalid for T < T,. The short-on-scale-r, 
decay process follows the von Schweidler fractal law [3,28] 

F,( t /%) = fp“  - h 9 ( t / 7 J b  + (7)  

where the exponent 0 < b 5 1 is the same for all correlations for the same system. For a 
varietyof examples, F q ( f )  is very close to the Iiohlrausch law F,(f) = f; exp(-fp) [29- 
331. This law is a mere fitting formula: the exponent p, as opposed to b ,  has no physical 
meaning. p is different for different quantities [33], it depends, for example, on the 
wavevector [30]. The equation for master function Fq [4] is complicated and does 
not allow for simple solutions. The many known experimental examples, where F 
differs strongly from F K ,  can be modelled by the MCT. The a-resonances make it 
desirable to extend the hydrodynamic description of the long-wavelength fluctuations 
in supercooled liquids. This can be done by extending (1) and (2) somewhat [34,35]. 

Within the @-region the correlations can be factorized [3] 

4 , w  = fp‘+ h,G,(t) (8) 
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so that the problem of solving (l,2) is reduced to determine the single correlator 
G,(t);  this holds for all A,  singularities and reflects the centre manifold theorem for 
bifurcations. The P-scaling law holds, which implies that the a-dependence of Gu is 
given by the correlation scale C, = m, the time scale rp ,  and the a-independent 
master function g* 

For large on-scale-rp times one gets g + ( i  >> 1) = const, implying (5) and g - ( f  >> 1) = 
-Bib,  implying (7). For short on-scale-rp times critical decay, specified by a fractal 
exponent 0 < a < 0.4, is obtained [3,28] 

$,(t> = 1,“ + h,(t,/t)” + o((t,/t)2a) . (10) 

A special implication of this decay is the P-peak phenomenon for which one finds 
asymptotically the Cole-Cole law [9, 331. The P-dynamics reflects the topology of 
the A,  singularity and this leads to  the following universality. All details of the MCT 
condense to  the time scale t ,  and the exponent parameter f 5 X < 1. Both depend 
smoothly on V. The latter fixes the master function g f ,  in particular the exponents 
a ,  b [3,28]. The most transparent form for the scaling equation [28] reads [36] 

The equation can be generalized to  account for hopping, whereby 6 obeys a two pa- 
rameter scaling law [l]. The anomalous dimensionalities a,  b also rule the two scales [l]. 
If 6 can be neglected one gets [3,28] 

Since the mode-coupling functional (2a) is given solely by the structure factor S, [ 5 ] ,  
master functions F,,g,  in particular the exponents a and b and also f q l  h,  are deter- 
mined by Sq. The whole dynamics, except for the scale t o ,  merely reflects equilibrium 
thermodynamics as given by the potential landscape in configuration space [9]. The 
fractal spectra reflect cantor sets for waiting time distributions [37]. For the hard- 
sphere system [5,38] and for a soft-sphere mixture [26] fq, h,  and X have been calcu- 
lated. In more complicated cases X has to  be used so far as a fitting parameter in the 
analysis of data.  
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