

Home Search Collections Journals About Contact us My IOPscience

The mode-coupling theory of liquid-to-glass transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1990 J. Phys.: Condens. Matter 2 SA201

(http://iopscience.iop.org/0953-8984/2/S/029)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 27/05/2010 at 11:16

Please note that terms and conditions apply.

The mode-coupling theory of liquid-to-glass transitions

W Götze

Physik-Department, Technische Universität München, D-8046 Garching, Federal Republic of Germany and Max-Planck-Institut für Physik und Astrophysik, D-8000 München, Federal Republic of Germany

Received 23 July 1990

Abstract. A mode-coupling theory for supercooled liquid dynamics exhibits bifurcation singularities which cause a temperature T_c for the crossover from liquid to glass behaviour. Near T_c the long-time relaxation is a two-step process related to the experimentally known α - and β -relaxation in structural glass formers. The dynamical anomalies predicted by the theory for the two processes are reviewed.

The mode-coupling theory (MCT) of glassy dynamics is based on closed equations of motion for a set of M correlators $\phi_q(t)$, $q = 1, \ldots, M$. A first equation connects accelerations, Hooke's restoring forces and friction forces

$$\ddot{\phi}_q(t) + \Omega_q^2 \phi_q(t) + \int_0^t M_q(t - t') \, \dot{\phi}_q(t') \, \mathrm{d}t' = 0 \,. \tag{1a}$$

The generalized viscosity or polarization kernel M relates a force at time t to velocities at times $t' \leq t$. The kernel M is expressed in terms of a Newtonian friction constant ν_q and two kernels m_q and δ_q via an equation which is algebraic for the Fourier-transformed variables

$$M_q(\omega) = [i\nu_q + m_q(\omega)]/\{1 - \delta_q(\omega)[i\nu_q + m_q(\omega)]\}.$$
(1b)

The frequencies Ω_q , ν_q determine the short time transient motion. Kernels m_q and δ_q are given in terms of the correlators via mode-coupling functionals

$$m_q(t) = \mathcal{F}_q(\mathbf{V}, \phi_k(t)) = \sum_k v_{q,k}^{(1)} \phi_k(t) + \sum_{kp} v_{q,kp}^{(2)} \phi_k(t) \phi_p(t) + \cdots . (2a)$$

$$\delta_{q}(t) = \sum_{k} w_{q,k}^{(1)} \ddot{\phi}_{k}(t) + \sum_{kp} w_{q,kp}^{(2)} \ddot{\phi}_{k}(t) \phi_{p}(t) + \cdots$$
(2b)

The non-negative coefficients of these polynomials, the coupling constants of the model, are combined to the state vector $\mathbf{X} = (\mathbf{V}, \mathbf{W})$ in the control parameter space \mathbb{R} . In applications q refers e.g. to the wavevector modulus of density fluctuations so that $\phi_q(t) = \langle \rho_q^*(t) \rho_q \rangle / S_q$, $S_q = \langle |\rho_q|^2 \rangle$ is the density correlator. Its spectrum determines

0953-8984/90/SA0201+05\$03.50 © 1990 IOP Publishing Ltd

the dynamical structure factor $S(q, \omega) = S_q \phi_q''(\omega)$. Coupling to transversal currents [1] is not noted above for the sake of simplicity. For the models with W = 0 one can show, that (1) and (2) has a unique solution with $\phi_q''(\omega) \ge 0$, [2].

The space \mathbb{R} can be split into the open set of liquid states \mathcal{D}_{L} , the set of ideal glass states \mathcal{D}_{G} , and the set of glass transition singularities \mathcal{D}_{C} . \mathcal{D}_{L} contains the weak coupling region $X \sim (0,0)$. For $X \in \mathcal{D}_{L}$ the correlations decay to zero $\phi_{q}(t \to \infty) = 0$ and the spectra $\phi_{q}''(\omega)$ depend smoothly on ω . The set \mathcal{D}_{G} consists of certain points X = (V,0) where $f_{q}(V) = \phi_{q}(t \to \infty)$ is positive and regular in V; \mathcal{D}_{G} contains the points with $\mathcal{F}_{q}(V,1) > V_{0}$ with some $V_{0} > 0$ [3,4]. $f_{q}(V)$ obeys the equation $f_{q}/(1-f_{q}) = \mathcal{F}_{q}(V, f_{k})$ [3,5]; if this equation has several solutions, the largest one is $f_{q}(V)$ [6]. $f_{q}(V) > 0$ is the signature of ideal glass states [7]. Like for a crystalline solid the dynamical structure factor exhibits an elastic line on top of a continuum

$$\boldsymbol{X} \in \mathcal{D}_{\mathbf{G}} : S(q, \omega) = S_{\boldsymbol{a}} \pi f_{\boldsymbol{a}} \delta(\omega) + \text{continuum}.$$
(3)

Unlike in a crystal, the Debye-Waller factor f_q here is positive for all q. The singularities of $f_q(V)$ for $V \in \mathcal{D}_C$, the glass transition singularities [1], are the bifurcation points of the model. The transition points from \mathcal{D}_L to \mathcal{D}_G , the ideal liquid-to-glass transitions, are special glass transition singularities. The bifurcations at V_c are of the cuspoid type A_l , $l = 2, 3, \ldots$ [8,9]. In the limit $V \to V_c$ one can solve (1) and (2) asymptotically for $t/t_0 \gg 1$. Near an A_3 singularity one finds e.g. [10]: $\phi_q(t) - f_q(V^c) = h_q p(\ln(t/t_0), g_2, g_3)$. Here p is the Weierstrass elliptic function with moduli $g_{2,3}$ depending smoothly on V. Depending on $V - V_c$ this implies e.g.

$$p \sim 1/\ln^2(t/t_0)$$
 $\ln(t/t_0)$ $(t_0/t)^a - (t/\tau)^b$. (4)

The exponents a and b depend smoothly on V and they approach zero for $g_{2,3} \rightarrow 0$. The MCT is interesting for two reasons. First, it describes new bifurcation scenarios with a variety of non-trivial relaxation laws. The novel features are caused by the interplay of the retardation effects in (1a) with the nonlinearities. Second, the decay laws near $V_c \in \mathcal{D}_c$ exhibit stretching; and this is the most important feature of glassy dynamics. The simplest singularities are degenerate A_2 points where $f_q(V_c) = 0$. They are of relevance for percolation transitions [11–13] and orientational glass transitions [14]. The combination of degenerate A_2 and A_3 singularities is of interest for spin glass transitions [8, 10, 15]. In the following only the canonical Whitney fold singularity A_2 will be considered, which was proposed for the description of structural glass transitions [5, 16].

For simple liquids the MCT can be derived from first principles [1,5] by exploiting Kawasaki's factorization approximation [17] to fluctuating force correlations, which appear e.g. in the formally exact generalized kinetic equation approach [18]. One gets only $v^{(2)}$ and $w^{(2)}$ terms in (2a) and (2b). Linear terms $v^{(1)}$, $w^{(1)}$ appear if models with frozen disorder are considered [11-15]. Kernel *m* describes relaxation with streaming patterns of incompressible backflow, the dominant dynamical feature of dense fluids [19]. Equations (1) and (2) with $\delta = \nu = 0$ extend the Feynman-Cohen approach of this phenomenon [20]. The term δ describes the other essential relaxation mechanism of dense systems: phonon assisted particle hopping over free energy barriers. If applied to disordered electron systems, (1) and (2) reproduce the standard results [21]. For large *m*, the dominance of kernel δ in (1b) leads to the Arrhenius law for the relaxation rate [22], the experimental signature of activated transport. If hopping is ignored, lowering the temperature T or increasing the density n drives the system through an ideal liquid-to-glass transition at T_c or n_c . Due to $\delta_q(T_c) \neq 0$ the system remains in a liquid state throughout [1,23]. If $\delta(T_c)$ is not too large the dynamics for $T \sim T_c$ exhibits strong anomalies reflecting the existence of the singularity V_c . So a crossover from liquid to glass dynamics for T near T_c is described by the MCT. The known dynamical anomalies of the liquid state appear as glass transition precursors. For $T \to T_c$ and $\delta(T_c) \to 0$ the V_c anomalies can be calculated to some extend analytically. The critical values T_c , n_c have been calculated for the hard-sphere system [5], for the Lennard-Jones system [24] and for hard-sphere [25] and soft-sphere mixtures [26]. For other systems, T_c can be identified by measuring the predicted crossover phenomena and fitting the data to the theoretical formulae.

The relaxation near an A_2 singularity is a two-step process characterized by two time scales $\tau_{\alpha}, \tau_{\beta}$. The long-time part for $\tau_{\beta} \ll t$ is called α -process; it leads to the α -peaks of the susceptibility spectra $\chi''(\omega) \propto \omega \phi''(\omega)$. The peak position can be chosen to define $1/\tau_{\alpha}$. The β - process describes the dynamics outside the microscopic transient before the center of the α -process for $t_0 \ll t \ll \tau_{\alpha}$. For an idealized transition both times diverge: $\tau_{\alpha}, \tau_{\beta} \to \infty$ for $T \to T_c +$. But $\tau_{\alpha}/\tau_{\beta}$ diverges also for $T \to T_c +$ so that the time interval $\tau_{\beta} \ll t \ll \tau_{\alpha}$, where both processes overlap, becomes large near the transition. Hopping processes, $\delta(T_c) \neq 0$, prevent $\tau_{\alpha}, \tau_{\beta}$ to diverge and cause crossovers to large but finite values $\tau_{\alpha}(T_c) \gg \tau_{\beta}(T_c) \gg t_0$ [1,27].

The Debye-Waller factor of the ideal glass is the α peak area for $T < T_c$ [1, 27]. It shows a square root singularity as function of the separation parameter $\sigma \propto (T_c - T) \propto n - n_c$ for $T \rightarrow T_c - [3]$

$$f_q = f_q^c + h_q A \sqrt{\sigma} \,. \tag{5}$$

For $T > T_c$ the α -relaxation part obeys the α -scaling law [4]

$$\phi_q(t) = F_q(t/\tau_\alpha) \,. \tag{6}$$

Here the master function F depends smoothly on V, so that the strong T or n dependence is caused by the scale τ_{α} only. There is α -scale universality [4] in the following sense for $T > T_c$. The scales for two α - processes, say τ_{α}^1 for the viscosity and τ_{α}^2 for the dielectric loss, increase strongly but $\tau_{\alpha}^1/\tau_{\alpha}^2$ is only a smooth function of T. Scale universality and scaling law (6) are usually invalid for $T < T_c$. The short-on-scale- τ_{α} decay process follows the von Schweidler fractal law [3,28]

$$F_q(t/\tau_\alpha) = f_q^c - h_q(t/\tau_\alpha)^b + \mathcal{O}\left((t/\tau_\alpha)^{2b}\right)$$
(7)

where the exponent $0 < b \leq 1$ is the same for all correlations for the same system. For a variety of examples, $F_q(\tilde{t})$ is very close to the Kohlrausch law $F_K(\tilde{t}) = f_q^c \exp(-\tilde{t}^\beta)$ [29–33]. This law is a mere fitting formula: the exponent β , as opposed to b, has no physical meaning. β is different for different quantities [33], it depends, for example, on the wavevector [30]. The equation for master function F_q [4] is complicated and does not allow for simple solutions. The many known experimental examples, where F differs strongly from F_K , can be modelled by the MCT. The α -resonances make it desirable to extend the hydrodynamic description of the long-wavelength fluctuations in supercooled liquids. This can be done by extending (1) and (2) somewhat [34,35].

Within the β -region the correlations can be factorized [3]

$$\phi_q(t) = f_q^c + h_q \mathcal{G}_\sigma(t) \tag{8}$$

so that the problem of solving (1,2) is reduced to determine the single correlator $\mathcal{G}_{\sigma}(t)$; this holds for all A_l singularities and reflects the centre manifold theorem for bifurcations. The β -scaling law holds, which implies that the σ -dependence of \mathcal{G}_{σ} is given by the correlation scale $C_{\sigma} = \sqrt{|\sigma|}$, the time scale τ_{β} , and the σ -independent master function g_{\pm}

$$\mathcal{G}_{\sigma}(t) = C_{\sigma}g_{\pm}(t/\tau_{\beta}) \qquad \sigma \leq 0.$$
(9)

For large on-scale- τ_{β} times one gets $g_{+}(\hat{t} \gg 1) = \text{const}$, implying (5) and $g_{-}(\hat{t} \gg 1) = -B\hat{t}^{b}$, implying (7). For short on-scale- τ_{β} times critical decay, specified by a fractal exponent 0 < a < 0.4, is obtained [3,28]

$$\phi_q(t) = f_q^c + h_q(t_0/t)^a + O((t_0/t)^{2a}).$$
(10)

A special implication of this decay is the β -peak phenomenon for which one finds asymptotically the Cole-Cole law [9, 33]. The β -dynamics reflects the topology of the A_2 singularity and this leads to the following universality. All details of the MCT condense to the time scale t_0 and the exponent parameter $\frac{1}{2} \leq \lambda < 1$. Both depend smoothly on V. The latter fixes the master function g_{\pm} , in particular the exponents a, b [3, 28]. The most transparent form for the scaling equation [28] reads [36]

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_0^t g_{\pm}(t-t')g_{\pm}(t')\,\mathrm{d}t' - \lambda g_{\pm}(t)^2 = \pm 1 \qquad \sigma \leq 0.$$
 (11)

The equation can be generalized to account for hopping, whereby \mathcal{G} obeys a two parameter scaling law [1]. The anomalous dimensionalities a, b also rule the two scales [1]. If δ can be neglected one gets [3, 28]

$$\tau_{\beta} = t_0 / |\sigma|^{1/2a} \qquad \tau_{\alpha} = \tau_{\beta} / |\sigma|^{1/2b}$$
 (12)

Since the mode-coupling functional (2a) is given solely by the structure factor S_q [5], master functions F_q, g , in particular the exponents a and b and also f_q , h_q are determined by S_q . The whole dynamics, except for the scale t_0 , merely reflects equilibrium thermodynamics as given by the potential landscape in configuration space [9]. The fractal spectra reflect cantor sets for waiting time distributions [37]. For the hard-sphere system [5,38] and for a soft-sphere mixture [26] f_q , h_q and λ have been calculated. In more complicated cases λ has to be used so far as a fitting parameter in the analysis of data.

References

- [1] Götze W and Sjögren L 1987 Z. Phys. B 65 415
- [2] Haussmann R 1990 Z. Phys. 79 143
- [3] Götze W 1985 Z. Phys. B 60 195
- [4] Götze W 1987 Amorphous and Liquid Materials ed E Lüscher, G Fritsch and G Jacucci (Dordrecht: Martinus Nijhoff) p 34
- [5] Bengtzelius U, Götze W and Sjölander A 1984 J. Phys. C: Solid State Phys. 17 5915
- [6] Götze W 1990 Liquids, Freezing and the Glass Transition ed J P Jansen, D Levesque and J Zinn-Justin (Amsterdam: North-Holland) to be published
- [7] Edwards S F and Anderson P W 1975 J. Phys. F: Met. Phys. 5 965

- [8] Götze W and Haussmann R 1988 Z. Phys. B 72 403
- [9] Götze W and Sjögren L 1989 J. Phys.: Condens. Matter 1 4183
- [10] Götze W and Sjögren L 1989 J. Phys.: Condens. Matter 1 4203
- [11] Götze W 1981 Recent Developments in Condensed Matter Physics ed J J Devreese (New York: Plenum) p 133 and references quoted therein
- [12] Götze W Leutheusser E and Yip S 1981 Phys. Rev. A 23 2634; A 24 1008
- [13] Götze W 1984 Z. Phys. B 56 139
- [14] Michel K H 1987 Z. Phys. B 68 259
- [15] Götze W and Sjögren L 1984 J. Phys. C: Solid State Phys. 17 5759
- [16] Leutheusser E 1984 Phys. Rev. A 29 2765
- [17] Kawasaki K 1970 Ann. Phys., NY 61 1
- [18] Sjögren L 1980 Phys. Rev. A 22 2866
- [19] Feynman R P and Cohen M 1956 Phys. Rev. 102 1189
- [20] Götze W and Lücke M 1976 Phys. Rev. B 13 3825
- [21] Belitz D and Schirmacher W 1984 J. Non-Cryst. Solids 61 1073
- [22] Sjögren L 1990 Z. Phys. B 79 5
- [23] Das S P and Mazenko G F 1986 Phys. Rev. A 34 2265
- [24] Bengtzelius U 1986 Phys. Rev. A 33 3433
- [25] Bosse J and Thakur J S 1987 Phys. Rev. Lett. 59 998
- [26] Barrat J L and Latz A 1990 J. Phys.: Condens. Matter 2 4289
- [27] Götze W and Sjögren L 1988 J. Phys. C: Solid State Phys. 21 3407
- [28] Götze W 1984 Z. Phys. B 56 139
- [29] De Raedt H and Götze W 1986 J. Phys. C: Solid State Phys. 19 2607
- [30] Bengtzelius U 1986 Phys. Rev. A 34 5059
- [31] Götze W and Sjögren L 1987 J. Phys. C: Solid State Phys. 20 879
- [32] Bosse J and Krieger U 1986 J. Phys. C: Solid State Phys. 19 L609
- [33] Buchalla G Dersch U Götze W and Sjögren L 1988 J. Phys. C: Solid State Phys. 21 4239
- [34] Bengtzelius U and Sjögren L 1986 J. Chem. Phys. 84 1744
- [35] Götze W and Latz A 1989 J. Phys.: Condens. Matter 1 4169
- [36] Götze W 1990 J. Phys.: Condens. Matter at press
- [37] Sjögren L 1989 Z. Phys. B 74 353
- [38] Barrat J L Götze W and Latz A 1989 J. Phys.: Condens. Matter 1 7163